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FOREWORD

The research described herein, which was conducted at Cornell Uni-
versity, Department of Thermal Engineering, was performed under NASA
Grant NGR-33-010-042 with Dr. John C. Evvard, NASA Lewis Research
Center, as Technical Monitor.
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SUMMARY

An analytical and experimental investigation was made to determine
in a qualitative way the nature of the boundary layer on the outside of a
liquid sphere in a steady, uniform stream at high Reynolds number. The
results indicate that the small perturbation boundary layers assumed by
some authors are not Justified when the densities and viscosities of the
fluids inside the sphere and outside of it are comparable.

INTRODUCTION

A study of fluid dynamic confinement mechanisms may lead to an im-
proved engineering capability for restraining very hot gases (as in nuclear
and plasma devices) without the direct use of confining walls. An impor-
tant consideration in such a study is the role of viscosity which is
crucial in a completely encapsulated flow. The motion of a liquid drop
in a surrounding fluid at rather high Reynolds number is a prototype of the
flows of interest. Though the stabilizing mechanism of surface tension is
available only for small scale flows, knowledge about the inner and outer
boundary layers in these flows should be helpful in the study of more
interesting self-contained flows.

This report, then, gives information about the nature of the boundary
layer on the outside of a drop in a steady, uniform stream at large
Reynolds number. The surface tension is assumed to be large enough to
make the drop nearly spherical. Harper and Moore (Ref. 1) assumed that
the velocity in the boundary layer on such a liquid sphere is given by a
small perturbation of the inviscid flow around a solid sphere such that
the velocity and tangential shear at the surface match those of an interior
boundary layer in which the velocity is a small perturbation of Hill's
inviscid spherical vortex solution. A typical velocity profile meeting
this assumption is shown in figure 1. Harper and Moore assumed that this
small perturbation scheme is applicable when the inside and outside
densities and viscosities are comparable, but the results of this note
indicate that under these conditions the velocity defect (the maximum
deviation of the boundary layer velocity from the outside inviscid
velocity at the surface) is 0(U,), and that a linearization of the bound-
ary layer equations made by assuming a small perturbation is not justified.
The nature of the outside boundary layer is investigated here by: (1)
examining the small Reynolds number Stokes-Oseen type of expansions for
the liquid sphere at moderately large Reynolds numbers; (2) experiment;
and (3) examining two terms of a power series in time for the impulsive
start of the liquid sphere.
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Figure 1. A typical velocity profile using the
small perturbation assumption.

STOKES-OSEEN EXPANSION FOR LIQUID SPHERE

It is a fact (although possibly due to coincidence) that the Stokes-
Oseen expansion of the stream function for uniform flow around a solid
sphere at small Reynolds number (Proudman and Pearson (Ref. 3)) gives an
accurate description of the actual flow behind the sphere at Reynolds
numbers which are below that at which the wake vortices begin to shed,
but which are still fairly large. Specifically, it accurately predicts
the shape and size of the wake eddy behind the sphere (Van Dyke (Ref. T)
page 150). The comparable expansions for the liquid sphere given by
Taylor and Acrivos (Ref. 6) are similarly used here at moderately large
Reynolds numbers in the expectation that they will give at least qualita-
tive information concerning the wake eddy, if any, behind the liquid

sphere.

If we pick coordinates and velocities as shown in figure 2 and define
stream functions such that
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then the two term small Reynolds number outside expansion valid near the
sphere for ¥S and the matching expansion inside the sphere for Y5 are:
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Figure 2. Notation for Stokes-Oseen expansion
for a liquid sphere.

The theory does predict wake eddies for some ranges of R and a.
Wake eddies for various values of R and o are shown in figure 3. Stream-
lines outside and inside the sphere for R = 100 and o = 1.0 are shown in
figures 4 and 5 respectively.

For a fixed Reynolds number the detached wake eddy of the liquid
sphere goes smoothly into the attached wake eddy of the solid sphere as
o »- 0. Since the theory gives an accurate picture for o = 0, there is
some reason to hope that there is a range of ¢ for which it gives at
least qualitative agreement with reality.
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Figure 3. 8ketch of wake eddies from
Stokes-Oseen theory.

For the range of ¢ for which a wake eddy can exist the small
perturbation boundary layer cannot be a good approximation since the
inviscid flow around a sphere is then not an appropriate description
of the outer flow. Further, the presence of the wake eddy implies
separation of the boundary layer, and there is no mechanism that would
cause the separation of a small perturbation boundary layer except in
the vicinity of the rear stagnation point.

Two other interesting features predicted by this theory are the
forward displacement of the center of motion of the inside flow shown
in figure 5, and the absence of reverse eddies on the inside of the
sphere. Both of these features were confirmed by the experiment below,
and the former has been noted in Satapathy and Smith (Ref. 4), Magarvey
and Kalejs (Ref. 2) and others.
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Figure k. Sketch of the outside streamlines given
by Stokes-Oseen theory. R = 100, o = 1.



Figure 5. Sketch of the inside streamlines given
by Stokes-Oseen theory. R = 100, o = 1.

EXPERIMENT

A simple experiment was made to show the wake eddies and the
internal circulation of drops. Drops of various liquids were formed
at the bottom of a glass cylinder filled with a field solution of
glycerin and water. The size of the drops was adjusted so that they
rose at various Reynolds numbers below that at which they would follow
a helical path. The lower half of the field solution was dyed. As a
drop rose in the dyed solution, its wake eddy entrapped dyed fluid. Since
the wake eddy is a closed, circulating region, it remained dyed, and thus was
visible, as the drop traversed the clear field fluid. Circulation inside
the drop itself was observed by introducing a thin mist of water droplets
into the drop fluid. There was no flow inside drops which were small
enough to be approximately spherical because the gradient in surface
tension caused by surface active contaminants was strong enough to over-
come the shearing force of the outside flow. Because of this it was
necessary to use fairly oblate drops. These drops were large enough to
have vigorous internal circulation, but their shape was a quantitatively
unknown factor influencing the character of their wake.

The experiment demonstrated that for a large range of viscosity
ratios the oblate drops had a wake eddy and a vigorous circulation inside
the drop which contained no reverse eddies. The absence of reverse
eddies within the drop tended to support the existence of a separation
distance between the drop and its wake eddy although no separation could
be distinguished (perhaps because of three dimensional effects and
because the separation region is almost stagnant and would itself hold
the dye for a long period of time). 1In a general way the experiment
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tended to confirm the picture given by the Stokes-Oseen expansion. A
point of disagreement was that the Stokes-Oseen expansion predicts that
above 0 & 0.6 no wake eddy will occur for any Reynolds number, but wake
eddies were observed behind vigorously circulating oblate drops when

c &% 20. Possibly shape is a stonger influence in trlggerlng separation
than is internal circulation in preventing it.

—

IMPULSIVE START OF A LIQUID SPHERE

By appealing to infinite surface tension one can conceive of the
impulsive start of a liquid sphere. Although the impulsive start problem
for such a body does not have any physical counterpart, its solution can
still show the kinematic effect of the liquid sphere boundary conditions
on the external flow. (These boundary conditions are continuity of
velocity and tangential shear at the sphere surface). If, for example,
the solution of the impulsive start problem for small time shows a
detached wake eddy, this is a qualitative confirmation of the picture
given at moderate Reynolds number by the small Reynolds number Stokes-
Oseen expansion and further supports the argument against the applicability
of the small perturbation boundary layer approximation for a certain
range of o.

We consider the flow field for small time and large Reynolds number
around and in a liquid sphere accelerated impulsively at t = O from rest
to a uniform velocity Ux. At t = O+ the inviscid flow outside the sphere
will be the steady potential flow around a solid sphere in a uniform
stream. What flow will be generated over the interior of the sphere at
t = O+ due to the impulsive acceleration? As soon as the motion begins,
the flow in the interior, except right at the surface, must be irrotational
because it was irrotational before the impulse, and the only source of
vorticity is the sphere surface. Thus the inside flow field is describable
by a potential, ¢, and since V4. (surface normal vector) = O everywhere
on the sphere surface, ¢ = O everywhere inside at t = O+.

Using the surface coordinates and the velocities shown in figure 6,
and defining dimensional stream functions V¥' and ¥' such that

[ - 1 1 = gt - cosb
u ¥ y'? v ¥ x' sind
(5)
a1 - G St G _ cosb
b ¥ y'’ v ¥ x! siné

the boundary layer equations in terms of the stream functions (Schlich-
ting (Ref. 5) page 185) are:
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where the subscripts indicate differentiation, the primes mean dimensional

~

quantities and the symbol is used for quantities inside the sphere.
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Figure 6. Notation for the impulsive
start of a liquid sphere.

Because the motion is impulsive, the pressure gradients are given

by :
9u
' oo
~ %P'x' U'%%T-= HE—-sinecose
(8)
D Y LA
pl <! dx! -

Using these gradients and the non-dimensional variables listed in
(11), these equations become:
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The boundary conditions to be satisfied by these equations are the
continuity of tangential shear and velocity at the interface and the
matching of tangential velocity to the appropriate inviscid velocity at
the outer edge of each boundary layer. Initially, in the outside
boundary layer Wy = %sinx, and in the inside boundary layer @y = 0.

In order to solve the boundary layer equations, we assume power
series in 1 for ¥ and V¥:

v o pl0) rw(l) P (12)

¥ A @(O) + T@(l) + e (13)

%h? equations, initial conditions and boundary conditions for y(0)
0]

and Y are:

(0) _ ,(0) _
Wyt Wyyy 0 (14)
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at y =0

where the curvature terms in the tangential shear condition have been
neglected consistent with the assumption of small time and large Reynolds

number.

The solutions, which are easily obtained using Laplace transforms,

are:
a2
¢(0) _ 3 V& sinx[(1-p)nerfn + (_%/:_T.TP_)_ (™" -1) + pn] (17)
R . —n2
§(0) o _ §é/ipsinx,[nerfcﬁ - %%(e "-1)] (18)
_ Voo =Y f-oy
where p = 1+ /;; » N = 2¢€ » N = /5
(1)

_The equations, initial conditions and boundary conditions for Y

and ¥'1) are:
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yy

To solve these assume that:

(1)

y - 9t3/2

sinxcosxf(n)

@(l) 3/2

9t sinxcosxg(f)

(]

so that (19) and (20) reduce to:

£''7°(n) + 2nf''(n) - 4£'(n) = -8F(n)

g'''(A) + 2Ag" ' (A) - bg'(A) =

!
=4
N

where

02 —p2
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-1) + %-erfczﬁ]

The solutions for f'(n) and g'(n) are:
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(27)
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2

l -
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1 2 L
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2
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&+ — — — —
V3 ne erfen + . e S e ] (29)
Streamlines for the case p = 0.1 and t' = .75 éi-are sketched in

figure 7. The detached wake eddy predicted by the small Reynolds number
theory is present. However, it is obvious from expression (30) for the
tangential velocity at the surface

u|y=° = %f-sinx + g(g-— %ﬁp(l—p)trsinxcosx + 0(t2) (30)

that if only the first two terms of the series are considered, there will
be a time when the eddy attaches to the sphere, and subsequently a reverse
eddy forms inside the sphere. Using these first two terms of the series,
the time that they predict reverse flow will start at the surface near
the rear stagnation point is

1 a
o & (31)
R 3 1 U
(—2-- ;)(l-P) @

Thus .846 ﬁi-< t'R < =, where the lower limit corresponds to a very
o0
a

viscous sphere. Consider a time less than .846 G but large enough so

11
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that a wake eddy has formed at some p, and let p + O ( and hence o + 0).
The wake eddy will move closer to the sphere until at p = 0 it attaches

to the sphere. Consider a time (greater than .846 éLO at which the wake
eddy has just attached to the sphere at some p # 0. ® Then,for larger p
the wake eddy is detached and for smaller p there is a reverse eddy
inside the sphere which must disappear again as p > O. This inside
reverse eddy does not appear in the small Reynolds number expansion, nor
has it been observed in experiments. Possibly its appearance in the small
time expansion is a result of that series not converging rapidly enough
when T v 1 for the first two terms to give even a qualitatively correct

picture of the flow.

Figure 7. Streamlines for impulsive start of a liquid
sphere. t' = .75 513 p = 0.1. (Radial

scale outside of drop is magnified.)

Since the inviscid velocity at the outside edge of the boundary
layer is gsinx, the velocity defect in the outside boundary layer at

small times ~ gsinx - %fsinx = (1—p)gsinx. As time increases, this

defect increases on the back hemisphere so that we can say the velocity
defect predicted by this theory is at least 0(l1-p). Thus, the small
perturbation assumption cannot be valid, according to this theory, unless
p ¥ 1, which means that the product op is large (the outside viscosity or
density is much larger than that on the inside).



CONCLUSION

The three descriptions above of the nature of the outside boundary
layer on a liguid sphere at moderate Reynolds numbers all say that
there is a range of viscosity ratio for which the assumption of a small
perturbation boundary layer is not realistic. The Stokes-Oseen expan-
sion, when applied at moderate Reynolds numbers, indicates that the
assumption is not good when o £ 0(1) (inside viscosity < outside
viscosity). The experiment indicated that it is not good for any
liquid system in which the drop is fairly oblate. The two terms of the
series solution of the impulsive start problem indicate that the small
perturbation boundary layer can only be applicable, if at all, when
p A& 1: that is, when inside viscosity << outside viscosity. Considering
all three descriptions together, it seems likely that the liquid sphere
has a normal kind of boundary layer on the outside when o < 0(1).

Present work is directed toward obtaining a description of the in-
side boundary layer by impulsively turning on viscosity inside and out-
side of a Hill's vortex of arbitrary strength relative to a steady,
uniform flow on the outside. It is hoped that the solution to this prob-
lem will indicate what strength the Hill's vortex must have in the steady
case, and that it will also show any peculiarities of the boundary layer
near the rear of the sphere where, presumably, it must separate and move
forward along the sphere axis as a wake.

13
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APPENDIX - SYMBOLS

sphere radius
property parameter, 1 + ¢

property parameter, 3 + 20

property parameter, if:g%gg

. . . P't
dimensionless outside pressure, ;;ﬁa
o0

outside pressure

inside pressure
Uma
Reynolds number, —

radial distance

]
dimensionless time, %~

o
artificial time

time

]
dimensionless outside velocity (tangential), %—

=2

=>

l

dimensionless inside tangential velocity,

c
£ 8

s
dimensionless outside tengential velocity, T
o

~8'

Um

dimensionless inside tangentiel velocity,

outside tangential wvelocity

inside tangential velocity

free stream velocity

outside inviscid velocity at sphere surface

inside inviscid velocity at sphere surface

241
. . . R a<v
dimensionless outside normal velocity, vt U
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“ 251
v dimensionless inside normal velocity, :tvU
0O ™
A outside normal velocity
v' inside normal velocity
sl
ve dimensionless outside normal velocity, %%—-
o0
~s!
e dimensionless inside normal velocity, %%——
(o]
1]
x dimensionless tangential coordinate at sphere surface, X
x' tangential coordinate at sphere surface
1
Yy dimensionless normal coordinate at surface, ;¥%==
vto
y! normal coordinate at surface
o property parameter,[i_
Yo
y
n outside similarity coordinate, 57?
n inside similarity coordinate, - %%f
6 angle between radiasl coordinate and axis of symmetry in radians

(see figures 2 and 6)

u outside viscosity
" inside viscosity
v outside kinematic viscosity
v inside kinematic viscosity

0 1
p ratio of densities, =+

o)
p' outside density
6! inside density
o] viscosity ratio, y

¥ Ut

1 dimensionless time pareameter, :



\

¢ potential function

1
¥ dimensionless outside stream function, ﬁ;/i)—t—:
dimensionless inside stream function, Uoo/\?

&>

1
y! outside stream function, /y u'dy’
o
yl
y! inside stream function, / u'dy’
o
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